RSS
fb
vk
tw
yuotube
12+
Главная » 1(01)1998 » Эволюция европейских автономных дыхательных аппаратов

Просмотров: 5 107
Об авторе
Автор статьи:

Эволюция европейских автономных дыхательных аппаратов

Архивная статья из №1 за 1998 г.

Леонардо да Винчи предлагал при подводных погружениях использовать в качестве резервуара для воздуха мех из-под вина. В семнадцатом веке другой итальянец, преподобный отец Борелли, придумал металлический водолазный шлем диаметром два фута (свыше 60 см), который перед погружением наполнялся воздухом. Отработанный воздух, проходя через изогнутую металлическую трубку, по идее изобретателя, должен был очищаться с помощью водяного охлаждения, после чего возвращался бы в шлем. Через каждые полчаса водолазу требовалось подняться на поверхность, чтобы сменить в шлеме воздух. Однако водолазы — современники Борелли — так ни разу и не испытали его изобретение.

Более практичный аппарат, на этот раз незамкнутого типа, сконструировал в 1825 году. Уильям Джеймс. Он представлял собой железный резервуар, наполненный сжатым воздухом. Емкость охватывала туловище водолаза наподобие пояса. Использованный воздух выходил из шлема через выпускной клапан. Для придания водолазу отрицательной плавучести к его поясу прикреплялся балласт.

Это был наиболее приемлемый тип снаряжения, однако и его ни разу не использовали. Тем временем успешно применялся водолазный колокол, а спустя несколько лет Зибе сконструировал мягкий скафандр, оказавшийся настолько эффективным, что надобность в автономном снаряжении не ощущалась, и работа по созданию и усовершенствованию его задержалась почти на целое столетие.

Но идеи живучи. В 1865 году два француза — горный инженер Рукейроль и лейтенант военно-морского флота Денейруз — изобрели аппарат, явившийся предшественником акваланга Кусто.

» Я совсем не претендую на новое изобретение, — сказал Денейруз, демонстрируя аппарат во Французской академии наук. » Я лишь попытался улучшить старую конструкцию.

Он имел в виду аппарат Уильяма Джеймса, появившийся за сорок лет до того. Но Денейруз проявил излишнюю скромность: снаряжение, предложенное Рукейролем и Денейрузом, можно было без преувеличения назвать новым изобретением.

Аппарат состоял из наполненного сжатым воздухом металлического резервуара, надевавшегося на спину, и закрывавшей глаза, нос и рот маски, представлявшей собой металлическую коробку с иллюминатором. Аппарат был снабжен удивительно оригинальным приспособлением в виде регулирующего клапана, представлявшего собой диафрагму или мембрану; на эту мембрану давит с одной стороны вода, а с другой » воздух, которым дышит водолаз. Когда давление воды увеличивается, в мембране приоткрывается клапан, и водолаз получает дополнительное количество воздуха. При уменьшении давления воды клапан автоматически закрывается, а избыточный воздух уходит через выпускной клапан. Иными словами, регулятор автоматически уравнивает давление воды снаружи и давление воздуха внутри тела человека.

Значение этого изобретения велико. Оно позволяло водолазу на любой глубине поддерживать почти нулевую плавучесть, как это может делать подводная лодка. Пользуясь руками и ногами наподобие горизонтальных рулей, он мог легко подниматься и опускаться. Это означает, что ему нечего беспокоиться о давлении воздуха, в отличие от водолаза в скафандре (который, чувствуя, что давление воды увеличивается, просил прибавить воздуха и, поднимаясь или опускаясь, постоянно регулировал выпускной клапан, чтобы обеспечить нужное давление).

Лицевая маска была предшественницей современной маски, хотя в тридцатые годы этого столетия людям и пришлось изобретать ее заново. Сила привычки в выборе водолазного снаряжения так же велика, как и в любом другом деле. Приверженность к традиционному тяжелому металлическому шлему укоренилась прочно, и бороться с ней было трудно.

Следует отметить, однако, что, когда Жюль Верн писал о целесообразности замены шлема маской, аппарат Рукейроля — Денейруза был только-только изобретен. В книге «Двадцать тысяч лье под водой», изданной в 1869 году, капитан Немо объяснил профессору Аронаксу, почему для него водолаз в скафандре не подходит.

» — Одетый в скафандр человек несвободен, — сказал он.» Его связывает шлем, через который насосы подают ему воздух. Если бы мы были прикованы шлангом к «Наутилусу», мы ушли бы недалеко.

» А каким же способом можно этого избежать» — спросил профессор.

» Пользоваться прибором Рукейроля — Денейруза, изобретенным двумя вашими соотечественниками, — ответил капитан Немо». И далее он уточнил, что в прибор этот необходимо внести некоторые улучшения. Улучшения, которые предложил Жюль Верн в своем романе.

— » Для собственной пользы я усовершенствовал прибор Рукейроля — Денейруза, — продолжал капитан Немо. » Чтобы водолаз мог выдержать очень большое давление, я добавил медный шар, который он надевает на голову».

Хорошо, что это был всего лишь роман. Медный шар, придуманный отцом научной фантастики, является плодом воображения, но отнюдь не научной мысли. Если назначение медного шара в том, чтобы уменьшить давление воды на голову (при этом давление на остальную часть тела остается прежним), то такой шар стал бы действовать по принципу всасывающего насоса, и произошло бы кровоизлияние в голову водолаза.

Через два года после того, как появилось изобретение Рукейроля — Денейруза (и до того, как Жюль Верн упомянул о нем в своей книге), этот аппарат был применен французской экспедицией при добыче губок в Эгейском море. Экспедицией руководил Альфонс Галь — врач, занимавшийся наблюдениями за состоянием человеческого организма в подводных условиях. Новое снаряжение, которым пользовались французские водолазы и некоторые местные жители — греки, нанятые для этой работы, оказалось весьма эффективным. Даже слишком эффективным, ибо, когда ныряльщики-греки увидели собранный «урожай» губок, то, испугавшись конкуренции, поломали аппараты, как луддиты в старину ломали машины.

Аппарат Рукейроля — Денейруза был применен также при одной из многочисленных попыток поднять легендарные испанские сокровища со дна залива Виго. Наличие регулятора дает этому аппарату явные преимущества перед скафандром Зибе; однако как аппарат автономного действия он не получил широкого распространения, да и не мог получить, хотя сами изобретатели в этом не были повинны. Несчастье их состояло лишь в том, что они опередили свою эпоху.

Количество воздуха, которое можно накачать в металлический резервуар, зависит от прочности металла, а в те времена еще не умели изготовлять сосуды, достаточно крепкие, чтобы выдержать большое давление. Самый большой сосуд, который тогда применялся, вмещал такое количество воздуха, которого хватало лишь на двадцатиминутное пребывание на глубине 30 футов или одиннадцатиминутное — на глубине 100 футов. Надень водолаз медный шлем или спустись под воду без него, все равно он не располагал бы достаточным запасом воздуха, чтобы работать на глубинах, где, как пишет Жюль Верн, существует «очень большое давление».

По этой причине аппарат был сконструирован с таким расчетом, чтобы водолаз мог при желании подключить свой воздушный резервуар к насосу, работающему на поверхности. Для этого он просто присоединял один конец обычного мягкого шланга к коробке, и насос вновь накачивал в нее воздух под максимально возможным давлением. Эта идея была и остроумна, и легко осуществима; жаль только, что водолазу приходилось так часто прибегать к помощи насоса, что автономное снаряжение оказывалось в значительной степени обесцененным.

Хотя Жюль Верн не был таким уж проницательным ученым, каким его иногда представляли, однако он, сам того не сознавая, способствовал усовершенствованию аппарата Рукейроля — Денейруза, упомянув о нем в романе; и в 1954 году, когда готовилось специальное оборудование для съемок фильма «Двадцать тысяч лье под водой», воздушный резервуар для аппарата построили из гораздо более прочного металла.

Аппарат Рукейроля-Денейруза, как и аппарат Уильяма Джеймса, относился к типу автономного подводного снаряжения так называемого незамкнутого цикла дыхания. Это попросту означает, что воздух, выдыхаемый водолазом, не возвращается в резервуар, а выбрасывается как отработанный материал в море.

Количество выбрасываемого воздуха относительно велико, если учесть вообще ограниченную вместимость воздушного резервуара. Вдыхаемый нами воздух содержит лишь немногим менее 80% азота, немногим более 20% кислорода и около 0,03% углекислого газа. Воздух же, который мы выдыхаем, содержит около 80% азота, 16% кислорода и 4% углекислого газа. Если воздух не выпускать, а регенерировать, т. е. 16% использованного кислорода возмещать, а 4% углекислого газа удалять, то будет достигнуто значительное увеличение эффективности резервуара. Кислород можно накачивать в металлические баллоны так же, как воздух. Удаление углекислого газа производится путем поглощения его химикатами. Это и есть принцип автономного регенерационного снаряжения с замкнутым циклом дыхания.

Практически водолаз не дышит обычным атмосферным воздухом, а берет с собой баллон с кислородом. Он дышит тем, что носит с собой. Если в баллоне только кислород, он и дышит кислородом. Если он хочет дышать кислородом в соединении с азотом или другой смесью газов, то должен наполнить этой смесью баллон. Как мы увидим ниже, такой принцип нельзя считать идеальным, но он прост, удобен и до определенной степени дает нужные результаты.

Подобный принцип был положен в основу аппарата, изобретенного в 1878 году Генри Флюссом, двадцатисемилетним офицером торгового флота.

Лицо водолаза закрывала водонепроницаемая маска, а от нее к мягкому дыхательному мешку вели две трубки. Мешок в свою очередь соединялся с медным баллоном, наполненным сжатым кислородом и коробкой с едким калием — поглотителем углекислого газа. Все это водолаз носил на спине. Вдыхал он чистый кислород, а выдыхал смесь кислорода с углекислым газом. Углекислый газ поглощался едким калием, содержавшимся в коробке, а очищенный кислород снова поступал в легкие. Израсходованное организмом количество кислорода возмещалось запасом, имевшимся в баллоне. Приток кислорода водолаз регулировал с помощью ручного клапана, установленного на баллоне. Автоматического редукционного клапана, подобного регулятору Рукейроля — Денейруза, не было. Система циркуляции воздуха была полностью замкнутой.

Во время первых испытаний аппарата, проводившихся в бассейне Политехнического института (Лондон), Флюсс находился под водой по часу. Затем он отправился на остров Уайта, чтобы испытать свой аппарат в море.

Друзья отвезли Флюсса на лодке в такое место, где глубина составляла восемнадцать футов. Перед спуском он прикрепил к себе свинцовые и железные грузы; к ногам прикрепил цепи. Все книги по медицине, которые он читал, указывали, что вдыхание чрезмерного количества кислорода вызывает лихорадочное возбуждение, поэтому, перед тем как надеть маску, он наполнил дыхательный мешок обычным воздухом. В баллоне, помещавшемся у него за спиной, был чистый кислород. Флюсс чувствовал себя настолько уверенным, что хотел спускаться без спасательного конца, но друзья убедили его отказаться от своего намерения.

Флюсс спустился на дно и пошел по нему. Друзья облегченно вздохнули, когда почувствовали, что спасательный конец натянулся. Но вдруг конец ослаб, и водолаза спешно вытащили наверх. Казалось, что он мертв. Потом начались судороги, Флюсс попытался выпрыгнуть из лодки. Друзья крепко держали его, пока он не успокоился. Когда он сел, у него началась рвота с кровью. Потом все постепенно прошло. Через неделю Флюсс снова нырял.

Спуски были достаточно безопасны, так как аппаратура действовала вполне нормально. Правда, он едва не погиб тогда, но не по вине аппаратуры, а из-за собственной любознательности. Находясь на дне, он задал себе вопрос: что произойдет, если прекратить подачу кислорода? Чтобы узнать это, он решил попробовать. И сразу же потерял сознание. Последовавшая кровавая рвота явилась результатом того, что во время очень быстрого подъема Флюсса на поверхность сжатый кислород внезапно расширился и распер его легкие.

Причиной, побудившей Флюсса сконструировать кислородный аппарат, явилось его желание посмотреть, что происходит в глубине моря. Он не ожидал, что его изобретением для этой же цели воспользуются другие люди, не говоря уже о профессиональных водолазах. Он считал, что его аппарат может быть полезен и в шахтах, когда воздух в них отравлен ядовитыми газами. Флюсс передал свой проект фирме «Зибе, Горман и К!», и та построила аппарат именно для этои цели. Испытания аппарата прошли успешно. Он был применен на шахтах Сиэма в 1880 году и в Киллингворте в 1882 году после происшедшей там аварии. В обоих случаях аппарат Флюсса служил как автономный респиратор или противогаз.

В то время автономный аппарат Флюсса не считался серьезным конкурентом традиционного скафандра. Предприниматели начали с того, что объединили аппарат Флюсса со стандартным скафандром Зибе, включая шлем и галоши, тем самым придав этому аппарату, как тогда считали, внушительный вид. При этом они руководствовались если не здравым смыслом, то, во всяком случае, силой привычки. В то время человек еще только мечтал жить в море как рыба и готов был пойти на компромисс со стихией. Он спускался под воду не для того, чтобы плавать, а чтобы ходить по дну. Единственное применение аппарат Флюсса находил в затопленных шахтах или туннелях, куда со шлангами проникать слишком опасно. В одном из таких случаев, имевших место всего лишь через год после первых испытаний, достоинства аппарата подтвердились при самых драматических обстоятельствах. В туннель, который прокладывали под рекой Северн, прорвалась речная вода и затопила его. Пытались выкачивать воду насосами, но безрезультатно. Тогда вызвали водолаза и поручили ему закрыть шлюз. Но тот не смог добраться до шлюза. Ствол шахты имел глубину 200 футов, да еще 1000 футов составляло расстояние по туннелю до шлюза. Для водолаза, пользующегося воздушным шлангом, такое путешествие было слишком трудным и опасным. Даже Александр Лэмберт, один из опытнейших водолазов того времени, не смог добраться до тяжелой железной двери.

Когда Флюсс узнал о случившемся, он предложил свои услуги. В то время никто еще не знал, что кислород весьма опасен и может быть смертелен на глубине свыше тридцати трех футов. Если не считать нескольких пробных спусков с аппаратом собственной конструкции, Флюсс никогда еще не занимался водолазным делом. Тем не менее ему хотелось попробовать. Предложение было принято, и Флюсс пошел на погружение. Лэмберт тоже спустился на дно шахтного ствола, чтобы указать ему дальнейший путь.

В те времена подводных светильников еще не было. Стоя на дне, в полном мраке, Флюсс и Лэмберт пожали друг другу руки, и Флюсс двинулся на ощупь вперед. Потолок обвалился, и ему пришлось добираться ползком. Продвигался он очень медленно, до шлюза было еще далеко, и он решил вернуться. Только через час встретился он с ожидавшим его Лэмбертом.

Флюсс предпринял еще несколько попыток и каждый раз пробирался немного дальше. Но при таком медленном темпе работа затянулась бы очень надолго. Тогда Лэмберт решил спуститься сам и получил разрешение воспользоваться кислородным аппаратом. Флюсс дал ему необходимые инструкции, после чего Лэмберт спустился в туннель. Он добрался до шлюза и закрыл один из клапанов, но работу не закончил, так как понадобились дополнительные инструменты. Под водой он пробыл полтора часа.

Флюссу пришлось съездить в Лондон, чтобы пополнить запас кислорода и поглотителя углекислого газа. Когда он вернулся, Лэмберт совершил еще один спуск и наконец закрыл шлюз. Теперь можно было освобождать туннель от воды насосами.

Это был большой успех, и молодой Флюсс отчасти разделил славу Лэмберта. Но его изобретение почти не привлекло к себе внимания. На протяжении двадцати с лишним лет никто не работал над его совершенствованием.

Но вот в 1902 году Флюсс получил письмо от нового управляющего фирмы «Зибе, Горман и К!» с просьбой принять участие в работе по усовершенствованию аппарата. Управляющего звали Робертом Г. Дэннисом. У него уже были некоторые соображения насчет того, как улучшить аппарат. Флюсс согласился.

Вскоре его кислородный аппарат существенно изменил свой вид. Медный баллон был заменен стальным, способным выдерживать гораздо большее давление и, следовательно, вмещать в пять раз больше кислорода. Поглотитель углекислого газа старого типа был заменен новым, улучшенным. Ручной клапан на баллоне уступил место редукционному клапану, впускавшему кислород автоматически под надлежащим давлением по принципу регулятора, установленного на аппарате Рукейроля-Денейруза. Все эти и ряд других новшеств были введены по предложению Дэвиса.

Новый вариант кислородного аппарата поступил в продажу под маркой «Прото», и в 1906 году был одобрен английскими углепромышленниками. В 1950 году, когда в шахте Нокшиннох Касл было заживо погребено 116 человек, в спасательных работах был применен опять-таки «Прото». Выйти из шахты можно было только через проход, в котором скопился смертоносный газ. Спасатели, вооружившись аппаратами «Прото», воспользовались этим проходом, и 116 человек, казавшиеся обреченными, были спасены,

Кислородный аппарат Флюсса — Дэвиса применялся для спасения людей во время пожаров; кроме того, в первую мировую войну солдаты пользовались им в качестве средства защиты от газовых атак. Дэвис приспособил его потом для авиаторов и альпинистов. Он же сконструировал костюм для полетов в стратосферу, это оказалось возможным благодаря тому, что проблема регулирования подачи воздуха и давления на больших высотах основана на тех же законах физики, что и в морских глубинах.

Однако спроса на автономное водолазное снаряжение все еще не было. Лишь после того, как Дэвис приспособил свой аппарат для вывода личного состава из затонувших подводных лодок, флоты Великобритании и других стран стали проявлять к нему интерес. Впоследствии аппарат приобрел широкую известность как «ПСАД» (подводный спасательный аппарат Дэвиса).

Текст: Патрик Прингл

Рубрики: 1(01)1998, Архив

Метки: ...

СВЕЖИЕ КОММЕНТАРИИ

система комментирования CACKLE

  • Календарь мероприятий

    Нет предстоящих мероприятия в указанный период времени.

Дайвинг - рейтинг DIVEtop WebDive. Top100 DiveLIST.ru Рейтинг лучших дайв-ресурсов рунета. Top100dive - most popular diving websites
Поддержать сайт на DIVEtop.ru :
1111111111111111